Network of Excellence

D4.2 Part II:
Engineering Secure Future Internet Services: A Research Manifesto and Agenda from the NESSoS Community
Abstract
This deliverable presents the second version of the NESSoS research roadmap in the area of secure service engineering. We justify the need for the topics we propose due to the upcoming rise of the Future Internet paradigm and the view for 2020 within this scenario.

Keyword list
Future Internet, Software and Service Engineering, Security, Roadmap
Document History

<table>
<thead>
<tr>
<th>Version</th>
<th>Type of change</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V0.1</td>
<td>Table of Contents</td>
<td>Aljosa Pasic (ATOS) Fabio Martinelli (CNR) Carmen Fernandez (UMA)</td>
</tr>
<tr>
<td>V0.2</td>
<td>Section 2</td>
<td>Aljosa Pasic (ATOS)</td>
</tr>
<tr>
<td>V0.3</td>
<td>Section 5</td>
<td>Carmen Fernandez (UMA) Francisco Moyano (UMA) Javier Lopez (UMA)</td>
</tr>
<tr>
<td></td>
<td>Section 3, some inputs for Section 6</td>
<td>Carmen Fernandez (UMA) Francisco Moyano (UMA) Javier Lopez (UMA)</td>
</tr>
<tr>
<td>V0.4</td>
<td>Section 4, Inputs for Section 5 Addition to Section 5.3.2</td>
<td>Carmen Fernández (UMA) Francisco Moyano (UMA) Javier Lopez (UMA)</td>
</tr>
<tr>
<td></td>
<td>Content in section 2.3.1, section 5.1.2</td>
<td>Carmen Fernández (UMA) Francisco Moyano (UMA) Javier Lopez (UMA)</td>
</tr>
<tr>
<td>V0.6</td>
<td>Update of section 2. Sections 3 and 4</td>
<td>Carmen Fernández (UMA) Francisco Moyano (UMA) Javier Lopez (UMA)</td>
</tr>
<tr>
<td>V0.7</td>
<td>Contents in section 5</td>
<td>Marina Egea (ATOS) Bjørnar Solhaug (SINTEF) Aljosa Pasic (ATOS)</td>
</tr>
<tr>
<td>V0.8</td>
<td>Updated Sections 5.4.1 and 5.5.5 Updated Section 5.5.1</td>
<td>Nora Koch Kristian Beckers Riccardo Scandariato Manuel Clavel Christoph Sprenger Federica Paci</td>
</tr>
<tr>
<td>V0.9</td>
<td>Executive summary and Introduction Updates of all the sections Section 1, 6</td>
<td>Carmen Fernández (UMA) Francisco Moyano (UMA) Javier Lopez (UMA)</td>
</tr>
<tr>
<td>V1.0</td>
<td>Section 5.4.2 Section 5.4.1.2 Abstract Update of Section 4</td>
<td>Carmen Fernández (UMA) Francisco Moyano (UMA) Javier Lopez (UMA)</td>
</tr>
<tr>
<td>Version</td>
<td>Comments</td>
<td>Reviewers</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>V1.1</td>
<td>Comments by Fabio Martinelli addressed</td>
<td>Carmen Fernandez (UMA) Francisco Moyano (UMA) Javier Lopez (UMA)</td>
</tr>
<tr>
<td>V2.0</td>
<td>Comments by Maritta Heisel and Kristian Beckers addressed</td>
<td>Carmen Fernandez (UMA) Francisco Moyano (UMA) Javier Lopez (UMA)</td>
</tr>
<tr>
<td>V3.0</td>
<td>Approved by internal reviewers</td>
<td>Carmen Fernandez (UMA) Francisco Moyano (UMA) Javier Lopez (UMA)</td>
</tr>
</tbody>
</table>
Table of Contents

TABLE OF CONTENTS .. 4

LIST OF FIGURES ... 5

LIST OF ACRONYMS .. 6

EXECUTIVE SUMMARY .. 7

1 INTRODUCTION ... 8

2 VISION AND ORGANIZATION .. 9
 2.1 Future Internet Vision ... 9
 2.2 NESSoS Scope .. 10
 2.3 Key Recommendations ... 11

3 GOALS AND GAPS .. 15
 3.1 Key Recommendations ... 16

4 FUTURE INTERNET APPLICATION SCENARIOS ... 17
 4.1 Application Case Studies .. 17

5 TOPICS AND ACTIONS ... 19
 5.1 Main Contributions of the Roadmap .. 19
 5.2 Properties to be Ensured .. 19
 5.3 Two Main Crossing Research Themes of Major Interests .. 20
 5.4 Enabling Methodologies and Technologies to Enhance FI Trustworthiness 27

6 CONCLUSION .. 45

CONTRIBUTORS ... 46

REFERENCES ... 47
List of Figures

Figure 1 Roadmap Topics ... 14
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOM</td>
<td>Aspect Oriented Modelling</td>
</tr>
<tr>
<td>BPEL</td>
<td>Business Process Execution Language</td>
</tr>
<tr>
<td>FI</td>
<td>Future Internet</td>
</tr>
<tr>
<td>FIPs</td>
<td>The Fair Information Practice Principles</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>IAB</td>
<td>Industry Advisory Board</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communication Technologies</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>PDP</td>
<td>Policy Decision Point</td>
</tr>
<tr>
<td>PEP</td>
<td>Policy Enforcement Point</td>
</tr>
<tr>
<td>PIP</td>
<td>Policy Information Point</td>
</tr>
<tr>
<td>QoS/P</td>
<td>Quality of Service/Protection</td>
</tr>
<tr>
<td>ROI</td>
<td>Return on Investment</td>
</tr>
<tr>
<td>RFID</td>
<td>Radio Frequency Identification</td>
</tr>
<tr>
<td>SaaS</td>
<td>Software as a Service</td>
</tr>
<tr>
<td>SDLC</td>
<td>Software Development Life Cycle</td>
</tr>
</tbody>
</table>
Executive Summary

This deliverable is the second part of D4.2. The main purpose of this document is to present a NESSoS research roadmap in the area of Secure Service Engineering. We have focused on the scenario and the view for 2020 in order to justify the need for the topics we consider relevant for research in the coming years. The review on the topics has been done taking into account the progress on the state of the art, including the progress made by the NESSoS consortium in the corresponding areas.
1 Introduction

The arrival of the Future Internet paradigm will bring a new way of connecting devices and new ways of communications. This will mean the raise of new security challenges as well as new vulnerabilities. It will be of paramount importance to consider security at very early stages in the SDLC. Then, the assessment on the cost of built-in security versus patching should be carried out for these new applications.

In order to overcome the new challenges that the arising of the FI will pose we have identified a set of research topics that we believe are worth to be considered in the mid-long term. We have classified these topics into two main categories. On one hand, we consider two main building blocks that are transversal methodologies: assurance and, risk and cost-aware during the SDLC. On the other hand, we have identified a series of topics of methodologies that contribute to enhance trustworthiness of FI services. They follow the usual SDLC and the short-mid term view that is proposed by NESSoS besides other topics that fit into the software development cycle such as users security awareness or autonomic security.

The structure of the document is as follows. Section 2 describes our vision of 2020 that justifies the need for research on the topics identified later on. Section 3 defines the main goals and gaps that we identified in this area. Section 4 illustrates some Future Internet scenarios. Section 5 describes the topics we propose to focus on. Section 6 concludes the document. We also include a list of contributors to the roadmap at the end of the document.
2 Vision and Organization

2.1 Future Internet Vision

This research roadmap starts with the fundamental assumption that we are in the middle of the largest and most important change in information and communication technology, which is largely based on the service oriented ICT vision, as well as integration of physical and virtual worlds.

In the service oriented vision of ICT, the shift is not only happening in the way the software is exposed, composed or delivered: all of these things are already there. The service model enables to continuously “on-the-fly” improve the functionality available to users who require major changes in end-to-end security mechanisms. This new setting will change the way software and service engineering will work, especially to make applications secure. The dynamicity of the applications or the need to a rapid adaptation of them into new settings or requirements might lead to the disappearance of boundaries between design and runtime. Systems will become more open and this will influence the way services are created and adapted and how security will be adopted in them. The need for real time verification and assurance will become more evident in these changing and dynamic environments.

The service-based systems decouple provisioning and management of the infrastructure from use of services, which allows users and service providers to focus on the areas where they are best-positioned to create value. Traditionally, security and dependability have been regarded as secondary aspects in system design and development. They have always been treated as an afterthought and, in many cases, it was taken for granted that security and dependability (S&D) would be provided by external infrastructures. The shift towards service-based systems introduced an opportunity to rethink the way we deal with old ad hoc security and dependability solutions. During the last five years, many research projects already addressed this opportunity through e.g. research on how to provide better support for capturing and incorporating security requirements.

In parallel, the emergence of the so-called Internet of Things and the integration between physical and virtual worlds gave birth to what is sometimes addressed as “future internet services”. Sensors and actuators embedded in physical objects (e.g. machines, roads or street lighting) are linked through networks, producing huge volumes of data that flow to services. What is revolutionary in all this is that these “future internet service-based systems” are already beginning to be deployed, and some of them even work autonomously, that is without human intervention. In the new scenarios, not only systems as a whole but also individual services running in or supported by those systems will have to adapt to dynamic changes of hardware and software, and even firmware configurations, to unpredictable appearance and disappearance of devices, software components or infrastructure resources. Pre-defined trust relationships between components, applications and their system environments can no longer be taken for granted.
What consequences do all these have for ICT security research and in particular for secure service engineering? Security management, as we know it today, is a process that requires knowledge of the relationships among many layers of technology, information, organisational structures, and operational processes, as well as the individuals involved in these processes. Can we trust, in the middle of the night, some SmartCity automated street lighting service? Can we trust a SmartHealthcare service even for life-critical monitoring functions? Can we trust that there will be trust in the future internet services, knowing that trust erosion on internet is a reality?

The vision of this research roadmap is yes, there will be trust in Future Internet services and this trust will be increased by means of linking subjective and context dependent trust to something more objective, such as the trustworthiness as a service property. This property is determined by a whole range of assurance processes, spanning over all phases of secure service engineering lifecycle and all components, as well as processes involved in the provision of FI services. A systematic evaluation of the security properties by measuring how well it conforms to a set of established metrics and criteria, however, cannot exist without many other building blocks. This is the objective of this roadmap: to identify which building blocks are needed in order to fulfil this vision that trust in Future Internet service-based systems will be steadily increased thanks to more mature, measurable and usable security solutions.

2.2 NESSoS Scope

NESSoS efforts focus on the area of secure services development for the FI. The way we envision this development is by the typical process of gathering requirements, design of an architecture and implementation. We address this development from the early phases of the SDLC. However, all of this might not be enough in the new settings that the FI will bring. We need to ensure that the services created are secure; therefore we foresee assurance as a transversal topic to be considered of paramount importance. Also, risk and cost awareness during the SDLC is one of the key research directions we foresee as transversal since it links security concerns with business.

Besides these two transversal areas, NESSoS research is focusing on methodologies and technologies for enhancing trustworthiness of the FI [D4.1_II]:

- Security requirements engineering
- Secure service architecture and design
- Security support in programming environments
- Service composition and adaptation
- Runtime verification and enforcement
- Users security awareness
- Security management
- Autonomic security
Quantitative aspects of security was not included in the last version of the roadmap but it came up naturally from the research carried out during the last year by CNR, IMDEA and KUL. Actually, this topic was supported by the organization of the QASA workshop as part of the NESSoS meeting in September 2012.

2.3 Key Recommendations

The key recommendations from the NESSoS consortium towards a trustworthy FI are outlined next and described in more detail in Section 5.

2.3.1 Two Main Crossing Research Themes of Major Interest

Security Assurance during SDLC: Assurance plays a central role in the development of software-based services to provide confidence about the desired security level. Assurance must be treated in a holistic manner as an integral constituent of the development process. We thus speak about design for assurance, seamlessly informing and giving feedback at each stage of the SDLC that the related models and artefacts satisfy their functional and security requirements and constraints. Since the choice of appropriate assurance methods depends on several factors including the concrete application context and the desired level of assurance, this activity will cover a correspondingly broad range of assurance methods that jointly offer full development cycle support. Quantitative notions of security (including metrics) will allow having systems being able to trade-off among several requirements in a rationale way and considering multiple factors (including energy consumption for the protection mechanisms).

Risk and Cost-aware SDLC: Secure engineering of software services requires security to be an intrinsic aspect of all phases and activities of the SDLC. Crucial in this setting is the continuous identification and assessment of security risks and cost to support the various development activities in reducing vulnerabilities by identifying the adequate security requirements, mechanisms and controls. At the same time, the value of such security solutions and their return on investment (ROI) must be justifiable and clearly demonstrated from a business-oriented perspective. In the setting of the FI SDLC, there are two main challenges that need to be addressed. First, security risk and cost assessment need to be embedded as a separate activity of the overall SDLC process, closely interacting with the service engineering activities, in each iteration of the SDLC. Second, the security risk and cost assessment in itself must be supported by a well-defined process and by assessment methods that are adapted to the characteristics of FI services. Some relevant goals in this respect are achieving traceability between risk and development models, managing evolving risks, and assessing risks at runtime. The definition of more precise economic security measures than what is available today is also necessary, as well as adequate means to assess ROI in security.
2.3.2 Enabling Methodologies and Technologies to Enhance FI Trustworthiness

Security Requirements Engineering: The FI applications will consist of a large amount of entities that will bring new security requirements that will need to be addressed such as location-privacy or privacy requirements. Sometimes, each of the entities might have its own security requirements with respect the application, and it is there when techniques for conflicts resolution should be developed. Special emphasis should be made on requirements related to compliance and privacy requirements. Also, the evolvement of requirements through the whole SDLC and the socio-economic impact of this evolvement should be taken into account.

Secure Service Architecture and Design: We need to increase the capability of designing secure software-based service systems for the internet of the future as well as to analyse security and ensure compliance of the underpinning architectures. The inclusion of identification, assessment and improvement of design principles in order to enhance those architectures in terms of flexibility, modularity and composability are also needed. All of these will facilitate the integration of novel security services as the Future Internet scenarios evolve. The research topics that need to be covered are related to model-driven architecture and security, compositionality of design models and security design patterns for FI. Also, it will be worth to explore the design of new appropriate languages to deal with specific properties such as for example privacy.

Security Support in Programming Environments: This research area covers new programming platforms that deliver development and runtime environments for trustworthy application code to be executed in the complex application scenarios depicted by the Future Internet. We will also address language based security, as well as secure coding principles and practices. Research will be based both on language design and implementation, including middleware and run-time environment. Type systems, verifying compilers, support for run-time property verification and enforcement will be addressed here as well. Programming principles and constructs will be investigated in order to ease secure service development and composition for the new application scenarios. Code signatures as well as code instrumentations, aspect oriented and other composition techniques for security and secure execution environments are also in the scope of this area.

Secure Service Composition and Adaptation: The integration and interoperability of services in order to tailor and enhance new services require adapting the service interfaces at different levels, including the semantic level. Other aspects to consider include assessing the trustworthiness of composition of services as well as composing security measures.

Run-Time Verification and Enforcement: Run-time verification complements programming verification and testing in order to provide assurance that cannot always be delivered. The research approaches we propose for this topic are run-time monitoring of data flow and monitoring usage control properties.
Users Security Awareness: With the upcoming growth of the FI users are becoming more situational-aware of the risks they are exposed to when using new services. The dynamicity of the FI also makes difficult to present the information in a clear format to the users. Therefore, the efforts on research should be oriented towards this direction making special emphasis on privacy.

Security Management: The security features of any system should be supported by appropriate monitoring and management tools. These tools will aid to implement measures to deal with threats and attacks and also to deal with security incidents. Even though, the research topic is not new we need to deep in it and in its deployment.

Autonomic Security: FI services will have to be executed on specific contexts. It would be desirable to choose different security mechanisms depending on certain levels of security depending on the context. New reasoners will therefore be needed in order to exploit service environment information and thus predict security reconfigurations depending on the changes on the environment.

Quantitative Aspects of Security: Quantitative security provides a numerical back-up for software artefacts. It is particularly essential for assurance and risk analysis and cost estimation. Some topics that greatly benefit from this area of research are usability and users security awareness. Quantitative security will assist users to become aware of how much personal information, for instance is being leaked in a certain service. Software vulnerabilities can also quantitatively been analysed.

Besides these topics we foresee a set of transversal properties such as compliance, privacy, trust and identity management to be always taken into account. On the top of all of these topics we should consider what threats we will face if the research we propose is not carried out. Figure 1 shows a graphical representation of the topics we listed above. In the core of this figure we depicted the major transversal topics of interest: security assurance and risk and cost-aware SDLC. Then, the topics highlighted in blue correspond to the software life cycle. The four topics outside the inner box correspond to technologies that are related to the development of the life cycle but have come out as additional topics of research. The properties to be always enhanced and the threats to face are present in all the facets of the life cycle.
Figure 1 Roadmap Topics
3 Goals and Gaps

The main goal of this document, as depicted in Section 2.1, is to identify and address the research areas that will be determinant in order to ensure that trust in FI service-based systems will be steadily increased during years to come. The research areas identification and selection process are in turn motivated by other sub-goals that have guided the elaboration of this roadmap. As it might be expected, these goals have a tight relationship with the topics described in Section 5, since the aim of these topics is to fill the current gaps that hinder the achievement of the goals described in this section.

<table>
<thead>
<tr>
<th>GOAL</th>
<th>GAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>G0 – To identify key areas of research towards enhancing and incrementing trust in FI.</td>
<td>Lack of corpus of knowledge on how security should be methodologically applied in FI scenarios in order to enhance trust at a technical and sociological level</td>
</tr>
<tr>
<td>G1 – To understand the new possibilities and, thus, the new vulnerabilities and security breaches that are opened as a consequence of the FI arrival.</td>
<td>Currently, many proposals for FI scenarios, but not yet very mature. Need to understand real, concrete examples of FI deployments.</td>
</tr>
<tr>
<td>G2 – To bridge the gaps between traditionally divergent communities, as they should work in cooperation towards the common general goal (G0).</td>
<td>Need for applying formal methods in security in the context of software and service engineering.</td>
</tr>
<tr>
<td>G3 – To understand the bidirectional relationship between security and the traditional SDLC (how security affects SDCL and how SDLC influences on security).</td>
<td>Need to address security as a primary concern from the very beginning. Although some early steps have already been taken in this respect, it is too immature yet.</td>
</tr>
<tr>
<td>G4 – To reconcile IT requirements with business needs.</td>
<td>Service-based software tightens the relationship between the business view and the pure IT view. Need to address security in new Software Engineering paradigms where software and business processes are aligned by means of a composition of heterogeneous services.</td>
</tr>
<tr>
<td>G5 – To encompass and comply with European and local law regulations as well as to consider how this research could contribute to the standards.</td>
<td>Need to address compliance, as FI applications span across different domains, regions, countries, etc, having each one their own regulations.</td>
</tr>
</tbody>
</table>
3.1 Key Recommendations

We have identified the main gaps that we foresee will appear in secure service engineering as a consequence of adopting the FI scenario. By identifying these gaps we are able to propose the main goals on research in this area that we believe should be considered. In the end is to provide the FI paradigm with properties and features that will make of is a trustworthy environment. Desirable features could be the following ones:

- Automatization of secure service engineering
- Increase security for services and service composition
- Compliance with law regulations and standards
- Improvement of interoperability
- Enhancement of users experiences and awareness
- Focus on the increase in privacy protection

In order to achieve the features mentioned above research should be oriented towards some specific topics in the area of secure service engineering. NESSoS consortium identified the areas of research proposed in Section 2.3, and extended in Section 5, that should help achieving these goals.
4 Future Internet Application Scenarios

As mentioned in Section 2 the view for the future is that a new Internet paradigm will emerge, where new scenarios will arise bringing embedded new security challenges, and in particular, for secure service engineering.

The new FI application scenarios could come from different domains although they are mainly related to scenarios where nomadic users or Internet of Things are involved. The commonality of these scenarios is the need for an environment where multiple parties and organizations have to share resources and re-use services. This brings the need for Software as a Service (SaaS) to be ensured in them. Typical technologies that will be very useful for the kind of new scenarios that will arise are cloud technologies or mobile applications. These technologies will fulfil the needs of FI scenarios that will arise where increasing amount of data and increasing dependency on third parties will be a fact. It is also likely that the users involved in the FI scenarios depend on mobile devices. A trustworthy environment should be guaranteed where users can access and use the provided services in a secure manner.

Since the range of FI scenarios that capture all the features that we mentioned above is extensive we selected two scenarios that can be seen as an exemplification of typical FI Internet scenarios. For the scenarios we selected resources are shared and the composition of services is an essential fact, as well as supervision and control. In particular, for the supervision and control scenario we selected a smart grid scenario whereas for the sharing of resources the chosen one has been an eHealth scenario. They have been described in detail in [D11.2]. They are described next in a summarized manner.

4.1 Application Case Studies

4.1.1 eHealth

eHealth (or electronic health) is broadly defined by the World Health Organization as the “use of Information and Communication Technology (ICT) for health”. The objective is to use information and communication technology to improve health care service delivery through the strategic use of technologies such as computers, Internet, satellite receivers, and personal mobile devices.

Most security problems arise when systems have to handle Personally Identifiable Information (PII) patient data. We call any kind of such records Electronic Health Records.

We consider the following scenarios for the eHealth application:

- Management of Electronic Health Records
- Patient Monitoring
- Patient Consent
4.1.2 Smart Grid

Smart grids use information and communication technology (ICT) to optimize the transmission and distribution of electricity from suppliers to consumers, allowing smart generation and bidirectional power flows – depending on where generation takes place. With ICT the Smart Grid enables financial, informational, and electrical transactions among consumers, grid assets, and other authorized users. The Smart Grid integrates all actors of the energy market, including the customers, into a system, which supports, for instance, smart consumption in cars and the transformation of incoming power in buildings into heat, light, warm water or electricity with minimal human intervention. Smart grid represents a potentially huge market for the electronics industry.

The scenarios considered for the Smart Grid application are the following:

• Smart home
• Electro mobility
• Local market automation
5 Topics and Actions

5.1 Main Contributions of the Roadmap

The first version of the NESSoS roadmap [D4.1-II] identified the main topics of research that the NESSoS consortium considered were worth to be researched in the mid-term. We will here describe them considering the progress on the State of the Art and the knowledge and understanding we have acquired during the last year of work in NESSoS.

We identified different groups of topics (see Sections 5.3 and 5.4): two main transversal topics and a series of enabling technologies and methodologies to enhance trustworthiness of the FI.

On the top of these two groups there are a set of common properties to be always ensured in the FI.

5.2 Properties to be Ensured

Compliance, Privacy, Trust, and Identity protection. These topics are currently becoming more and more important due to the increase of interoperability and heterogeneity concerns within the FI. The increase in privacy protection should become a goal where research efforts should be directed. Particularly, it is worth to mention that location-privacy will be crucial in FI scenarios. NESSoS partners are doing some efforts towards this in a specific scenario that is used during the project, that is the SmartGrid scenario. In this sense, advances have been driven towards providing techniques for location-privacy for one of the most important elements of a SmartGrid, which are Wireless Sensor Networks. In particular, how to hide the location of the base station from attackers [RIO12]. Similar efforts will have to be made in other scenarios and cases of the FI.

Also, the “right to be forgotten” is challenging. New schemas for identity management are required, since identity is emerging as an additional Internet layer with high impact within the FI. Recently, companies consider identity management as a handicap. This becomes more of an issue when companies tend to operate in the cloud and try to concentrate their operations in these settings. It is then when Identity-as-a Service could be desirable (IaaS) [CSA11]. This concept may comprise many services that provide entities with identity such as Policy Enforcement Points (PEP-as-a-service), Policy Decision Points (PDP-as-a-service), Policy Access Points (PAP-as-a-service). A similar approach could be useful for the FI scenarios. Identity of the many heterogeneous entities conforming the FI could be provided by the services mentioned earlier. Moreover, this involves the need for developing new or adapted mechanisms that enable managing users identities. This means that identity management mechanisms that are able to deal with the interoperability and heterogeneity of the FI are needed.

Also, trust management among boundaries will become of paramount importance in order to gain a tight integration of things, services and humans for an efficient and useful FI, as a consequence of adopting trust, on the top of security. At the moment, the inter-boundaries trust management approach is not being considered by the research community but it will be
essential for FI. Not only ways to assess reliability and good behaviour of entities in a system are needed but also how this can be translated for a setting of different heterogeneous systems and entities.

Note that we are emphasizing in compliance and privacy from the requirements engineering point of view in Section 5.4.1.

5.3 Two Main Crossing Research Themes of Major Interests

5.3.1 Security Assurance

The main objective is to enable assurance in the development of software based services to ensure confidence about their security level. Our core goal is to incept a transverse methodology that enables to manage assurance throughout the service and software development life cycle (SDLC). The methodology is based on several strands: A first sub-domain covers early assurance at the level of requirements, architecture and design. A second sub-domain includes the more conventional and complementary assurance techniques based on implementation. Additionally, we consider also quantitative notions of security (e.g. security metrics) that have their own separate topic.

5.3.1.1 Assurance during the Early Stages of the SDLC

Early detection of security failures in Future Internet applications reduces development costs and improves assurance in the final system. This first strand aims at developing and applying assurance methods and techniques for early security verification. We consider several such methods:

• *Stepwise refinement*. One main area of research is step-wise refinement of security, by developing refinement strategies, from policies down to mechanisms, for complex protocols, services, and systems. This involves the definition of suitable service and component abstractions (e.g., secure channels) and the setup of the corresponding reasoning infrastructure (e.g., facts about such channels). We need to extend the refinement framework to cope with *compositional* techniques for model-based secure service development.

• *Formal model extraction*. There is an increasing demand of models and techniques to allow the formal analysis of secure services. The objective is to develop methodologies, based on formal mappings from constraint languages, to other formalisms for which theorem proving and/or (semi-) decision procedures are available, to support formal (and, when possible, automated) reasoning about the security policy models.

• *Algorithmic protocol verification*. We also study methods and develop tools for the automatic verification of FI protocols. This requires several extensions with respect to traditional protocol verification. For example, we need to deal with more complex primitives and security properties and we need to extend the standard Dolev-Yao attacker to include new attack possibilities. In this area, we can record substantial progress along several lines. In [ACRT11], we have studied attacker models that are relevant for Future Internet applications, namely, multiple non-communicating attackers.
and a class of attacks that arise from the XML representation of messages, called XML rewriting attacks. We give a decision procedure for these cases based on a generalized form of intruder constraints. In [FT11, FT12], we have proposed an integrated formal language for specifying declarative distributed authorization policies that communicate through insecure asynchronous media. We need to concentrate efforts towards increasing the expressiveness of our protocol models and extending the scope of the related methods and tools (e.g., to handle larger classes of authorization policies).

5.3.1.2 Security Assurance in Implementation

Several complementary assurance techniques are available to ensure the security at the level of an implementation. Security policies can be implemented correctly by construction through a rigorous secure programming discipline. Internet applications can be validated through testing and debugging. It is possible to develop test data generation that specifically targets the integration of services, access control policies or specific attacks. Moreover, implementation can be monitored at run-time to ensure that they satisfy the required security properties.

Several activities are related to **secure programming**. This strand addresses a comprehensive solution for program verification, with a particular focus on session management in concurrent and distributed service compositions.

- **Programming for verifiable security**: The Future Internet will reinforce the prominence of highly distributed and concurrent applications, increasing the need for methodologies that prevent security holes that exploit the computational infrastructure. The objective is to develop a discipline of secure programming based on verifiable security, using program analyses and verification methods. We need to develop enforcement mechanisms that combine different verification methods and allow enforcing a wide range of policies (of information flow and resource usage).

- **Support for secured session management**: A specific issue for web service security is the proper processing of the message stack. For instance, a BPEL process may have several instances or sessions running concurrently and among these instances several might be accepting some incoming message at the same time. Hence for the run-time reliability of the system it is crucial to assign the right message to the right session. This dispatching operation needs to be carefully designed from security requirements.

In addition, an important set of research activities concerns **testing and debugging**. Testing is the process of finding faults in an application after it has been implemented, but before it is deployed to the final users. The main goal of testing techniques is to produce inputs that manifest faults in the application. Debugging is the process of giving an input that manifests a fault, gathering enough information about the fault so that it can be fixed. This typically requires understanding the fault and its causes.

Testing and debugging complement techniques that happen earlier in the SDLC such as early assurance techniques used during the design of the application and secure programming techniques used during its implementation. Even when early assurance and secure
programming techniques have been used, testing is still needed to identify faults that may have been introduced during the implementation of the application or during the integration with external systems, while debugging is needed to fix those faults.

Traditionally, testing and debugging have been slow and costly processes requiring a large amount of manpower. In the highly dynamic environment of the modern and Future Internet, where applications need to be quickly updated and new applications are constantly being developed, it is of fundamental importance to develop automatic techniques and tools that reduce the time needed for testing and debugging, while assuring the safety and reliability of the deployed application.

Here are three aspects that although not comprehensive, are characteristic for service-oriented applications in the Future Internet.

- **Model-based penetration testing.** Penetration testing consists in evaluating the robustness of a (current or future) Internet application to well-known attacks. We need to investigate models to guide a penetration-testing tool for interactive testing, which should be automated as much as possible. Given an implementation, and a model for a common type of attack or risk, penetration testing will be useful to see if this implementation suffers from any vulnerability. We assume the models are transition systems. These inputs are fed into a penetration-testing tool to guide the user in interactive model-driven penetration testing.

- **Automatic generation of test data for web applications.** The input domain of a web application can be modelled by an XML schema. In that case a test data is an XML file conforming to the schema. The major issue for test generation is that there can be an infinite number of XML files that conform to the schema. We need to explore several approaches for automatic test data generation. A first approach is based on the partitioning of the input domain and then automatically generate instances in each range of the partition. A second approach consists of sampling the input domain through combinatorial testing techniques.

- **Debugging.** The complexity of FI applications is reflected in the debugging process: source code may often be unavailable, non-deterministic behaviour makes it hard to reproduce the faulty behaviour, and the use of legacy languages without proper memory management prolongs the existence of dangling pointer vulnerabilities. Current research focuses on two different areas for early detection. Differential slicing is an efficient technique for debugging security vulnerabilities based on binaries [JCCM+11]. Early detection [CGMN12] is a runtime approach for finding and diagnosing use-after-free and double-free vulnerabilities. While previous work focuses on the creation of the vulnerability (i.e., the use of a dangling pointer), early detection shifts the focus to the creation of the dangling pointer(s) at the root of the vulnerability. Other aspects of debugging security vulnerabilities such as those related to distribution require further investigation.

5.3.1.3 Towards a traverse methodology

Security concerns are specified at the business-level but have to be implemented in complex distributed and adaptable systems of FI services. We need comprehensive assurance
techniques in order to guarantee that security concerns are correctly taken into account through the whole SDLC. A chain of techniques and tools crossing the above areas is mandatory.

5.3.1.4 Quantitative Security for Assurance

Measurements are essential for the objective analysis of system security. Metrics can be used directly for computing risks (e.g., probability of threat occurrence) or indirectly (e.g., time between antivirus updates). Security metrics in Future Internet applications become increasingly important (although still very challenging). Service-oriented architectures demand for assurance indicators that can explicitly measure the quality of protection of a service, and hence indicate the effective level of trustworthiness. These metrics should be assessable by and communicable to third parties. Clients want to make sure that their data is well protected when it is outsourced to other domains over which the client has only limited or no control. We need to define formal metrics and measurements that can be practically calculated. Compositional calculation approaches will be studied in this context. Many of the proposed metrics will be linked to and determined by the various techniques in the Engineering process. This topic emerged as a central one and it is also discussed more broadly in the rest of the document.

5.3.1.5 Threats

We envisage several threats if the described agenda is not followed by the scientific community.

The increasing complexity of services demands not only the ability to build secure systems, but also to be able to prove and certify service security levels to third parties that will then utilize these services for their own purposes (new services). This is a complex task, requiring a chain of proofs and assurance cases and techniques during the whole SDLC. Indeed, it is important to stress that the assurance techniques associated with the different phases of the SDLC such as design verification, testing and debugging, and runtime verification and enforcement are complementary yet all necessary. This means that each of these techniques independently contributes towards improving security assurance. Therefore, we have to invest further research efforts in order to improve all of these techniques and make them fit to face the challenges posed by the Future Internet. More generally, software with vulnerabilities presents a threat not only to European competitiveness but also to European economy and critical infrastructures. We will witness situations where the vendor of software might not provide a patch in time to minimize the risks of attacks, which take advantage of the given vulnerability. Issues related to security assurance (together with other phases of secure service engineering) also address the crucial need to evaluate software coming from unknown or not well-known European sources.

5.3.2 Risk and Cost Aware Service Development Life Cycle (SDLC)

Risk management is the set of coordinated activities to direct and control an organization regarding risk. It involves risk assessment and the identification of treatment options for unacceptable risks [ISO09]. Our research agenda for a risk and cost aware SDLC highlights challenges that are FI characteristic and for which traditional methods for risk
identification, risk modelling and risk analysis provide little specialized support. Generally, there is the need for a methodology to support a risk and cost aware SDLC for secure FI services. Such a life cycle model aims to ensure the stakeholders’ return of investment when implementing security measures during various stages of the SDLC. We can envision several aspects of this kind of SDLC:

- **Process**: The methodology for risk and cost aware SDLC should be based on an *incremental and iterative process* that is accommodated to an incremental software development process. While the software development proceeds through incremental phases, the risk and cost analysis will undergo new iterations for each phase. As such the results of the initial risk and cost analyses will propagate through the software development phases and become more refined. In order to support the propagation of analysis results through the phases of the SDLC one needs to develop methods and techniques for the refinement of risk analysis documentation. Such refinement can be obtained both by refining the risk models, e.g. by detailing the description of relevant threats and vulnerabilities, and by accordingly refining the system and service models.

- **Aggregation**: In order to accommodate to a modular software development process, as well as effectively handling the heterogeneous and compositional nature of Future Internet services that also involves the perspective and requirements of several competing stakeholders, one needs to focus on a modular approach to the analysis of risks and costs. In a compositional setting, also risks become compositional and should be analysed and understood as such. This requires, however, methods for aggregating the global risk level through risk composition. Building on recent work on modular risk assessment [BRS10], some progress has been made on component-based risk assessment [BRS12], where risks are identified, analysed and documented at the component level. The objective is to support composition of risk assessment results.

- **Evolution**: The setting of dynamic and evolving systems furthermore implies that risk models and sets of chosen mitigations are dynamic and evolving. Thus, in order to maintain risk and cost awareness, there is a need to continuously reassess risks and identify cost-efficient means for risk mitigation as a response to service or component substitution, evolving environments, evolving security requirements, new stakeholders emerging, etc., both during system development and operation. Based on the modular approach to risk and cost analysis one needs methods to manage the dynamics of risks. In particular, the process for risk and cost analysis is highly iterative by supporting updates of global analysis results through the analysis of only the relevant parts of the system as a response to local changes and evolutions. Recent work in this direction includes a generalization of the ISO 31000 risk analysis process [ISO09] to provide specialized support for change management [LSS11]. In this work, method and language support is also provided to facilitate the modelling and traceability of changes from the target of analysis to the risk models, as well as the explicit modelling and analysis of the resulting changes to the risk picture. In [SS12], the need for tool support to handle change and evolution is discussed, and a prototype tool to automate traceability and detection of risk changes is presented.
• **Run-time**: The dynamic and evolving nature of the FI need to be handled also at run-time. For this purpose various means for risk and cost monitoring can be utilized to support continuous assessment of security risks and costs in which assessment results are continuously updated. One such research strand is on risk- and cost-based methods for run-time enforcement of access and usage control policies. For highly dynamic FI services and systems, attributes that are required for access decisions change frequently, and their value may be uncertain. In [KLM+10] an approach to risk-aware usage decision is proposed, where the uncertainty is used to assess the involved risk of access or usage requests. Recent progress has been made in [KLM+12] where cost is explicitly taken into account such that policy enforcement not only ensures an acceptable level of risk, but also justifiable cost. Another research strand is on dynamic risk assessment by indicator monitoring. The use of indicators and metrics for security monitoring is well-established, but for organizations to utilize monitoring there is a need for methods to identify adequate indicators and to assess their validity with respect to what they intend to measure. Such a method is presented in [LRS12], and can be used to facilitate automated and dynamic updates of risk analysis results. Tool-support for this is discussed in previous work [LRS+11], where also an architectural pattern for enterprise level monitoring tools is presented.

• **Interaction**: The methodology of this strand spans the orthogonal activities of security requirement engineering, secure architecture and design, secure programming as well as assurance and the relation to each of these ingredients must be investigated. During security requirements engineering risk analysis facilitates the identification of relevant requirements. Furthermore, methods for risk and cost analysis offer support for the prioritisation and selection among requirements through e.g. the evaluation of trade-off between alternatives or the impact of priority changes on the overall level of risks and cost. In the identification of security mechanisms intended to fulfill the security requirements, risk and cost analysis can be utilized in selecting the most cost efficient mechanisms. The following architecture and design phase incorporates the security requirements into the system design. The risk and cost models resulting from the previous development phase can at this point be refined and elaborated to support the management of risks and costs in the design decisions. Moreover, applying cost metrics to design models and architecture descriptions allows early validation of cost estimates. Such cost metrics may also be used in combination with security metrics for the optimisation of the balance between risk and cost. The assurance techniques can therefore be utilized in providing input to risk and cost analysis, and in supporting the identification of means for risk mitigation based on security metrics.

5.3.2.1 **Other Challenges**

A formal foundation for risk management may serve as a basis for rigorous analysis and reasoning about risk by means of formal methods. The first challenge in risk analysis and management from a formal methods perspective is to find a formal semantic foundation of risk that is sufficiently general and expressive for the task. The second one, and possibly a harder
challenge, is to utilize the formal foundation, together with the principles of formal methods, to
define methods to support risk analysis and surrounding activities.

Risk methodology validation and integration are crucial issues as well. The former is
required to analyse and compare objectively the strengths and weaknesses of different risk
methodologies. The latter allows combining different risk frameworks in order to leverage the
strengths of the frameworks and suppressing their limitations.

Some efforts have already being made on achieving higher levels of abstraction for
software security and risk and cost-awareness, on dynamic risk monitoring and on common
semantics for development and risk analysis models, in order to achieve traceability amongst
both models. Nevertheless, other solutions are necessary. Run-time risk assessment is required
since risk changes very frequently and static risk analysis performed once or twice a year is not
enough. Run-time re-configurability of security based on risk management requires further
research. Other areas include achieving modularity, identifying common causes of failures,
analysing inconsistencies and handling changes in risk analysis documentation, evolving risks,
allowing composition and decomposition of risk models and dynamic contract-based risk
sharing via certification.

5.3.2.2 Threats

We envisage several threats towards the development and provisioning of secure FI
services should the scientific community at large fail to pursue the above described agenda. In
particular:

• Industry and service providers need to ensure properties such as compliance, privacy,
 trust and identity protection while making business. Without methods to ensure return
 on investment (ROI) in security, security may fail the competition with other business
 priorities. The ROI in security during the SDLC must therefore not only be ensured, but
 also clearly demonstrated at a business level.
• Risk and cost management in the FI setting must be supported by methods, techniques
 and tools to handle the highly dynamic, compositional and heterogeneous nature of FI.
 Traditional risk analysis methods are largely monolithic in the sense that systems are
 understood and analysed as a whole. Without a modular approach to risk analysis, a full
 analysis may have to be conducted anew whenever services or systems are recomposed.
 There is hence a risk that traditional methods become too heavy and costly for the FI
 setting, and that risk models and risk analysis results quickly become invalid and out of
date.
• Related to the latter is the lack of methods and techniques to handle change and
 evolution. When systems and services change and evolve, so do risks and should be
 modelled and analysed as such. With traditional methods, previous analysis results may
 become out of date and risk analysis efforts can be in vain. Moreover, lack of
 appropriate means for run-time risk assessment of the frequently changing FI services
 may be highly insufficient for continuously keeping the security risk picture up to date.
5.4 Enabling Methodologies and Technologies to Enhance FI Trustworthiness

5.4.1 Security Requirements Engineering

The main focus of this research strand is to enable the modelling of high-level requirements that can be expressed in terms of high-level concepts such as compliance, privacy or trust. These can be subsequently mapped into more specific requirements that refer to devices and to specific services. A key challenge is to support the participation of an unprecedented multitude of autonomous stakeholders and devices – probably one of the most distinguishing characteristics of the FI.

The need for assurance in the Future Internet demands a set of novel engineering methodologies to guarantee secure system behaviour and provide credible evidence that the identified security requirements have been met from the point of view of all stakeholders. The security requirements of Future Internet applications will differ considerably from those of traditional applications. The reason is that Future Internet applications will not only be distributed geographically, as traditional applications are, but they will also involve multiple autonomous stakeholders, and may involve an array of physical devices such as smart cards, phones or RFID sensors that are perpetually connected and transmit a variety of information including identity, bank accounts or location. Some of these transactions might even happen transparently to the user; for example, a person’s identity could be seamlessly communicated by a personal device to the store she is entering to do the shopping. Addressing concerns about identity theft, unauthorized credit card usage, unauthorized transmission of information by third-party devices, trust or privacy are critical to the successful adoption of FI applications.

Service-orientation and the fragmentation of services (both key characteristics of FI applications) imply that a multitude of stakeholders will be involved in a service composition and each one will have its own security requirements. Hence, eliciting, reconciling, and modelling all the stakeholders’ security requirements become a major challenge [BGG04]. Multilateral Security Requirements Analysis techniques have been advocated in the state of the art but substantial research is still needed. In this respect, agent-oriented and goal-oriented approaches such as Secure Tropos [GMZ06] and KAOS [DLF93] are currently well recognized as means to explicitly take the stakeholders’ perspective into account. These approaches will represent a promising starting point but need to be uplifted in order to be able to cope with the level of complexity put forward by FI applications. New requirements frameworks and languages that take legislative constraints, as well as socio-technical and economic aspects into account, are needed in order to manage data through multiple domains. Indeed, it is important that security requirements are addressed from a higher-level perspective, e.g., in terms of the actors’ relationships with each other. Unfortunately, most current requirements engineering approaches consider security only at the technological level. In other words, current approaches provide modelling and reasoning support for encryption, authentication, access control, non-repudiation and similar requirements. However, they fail to capture the high-level requirements of trust, privacy or compliance. It is also essential to analyse how security may impact on other functional and non-functional requirements, including Quality of Service/Protection (QoS/P), both at design-time and at run-time.
This picture is further complicated due to the vast number and the geographical spread of smart devices stakeholders would deploy to meet their requirements. Sensor networks, RFID tags, smart appliances that communicate not only with the user but also with their manufacturers, are examples of such devices. Such deployments inherit security risks from the classical Internet and, at the same time, create new and more complex security challenges. Examples include illicit tracking of RFID tags (privacy violation) and cloning of data on RFID tags (identity theft). Applications that involve such deployments typically cross organization boundaries.

Security requirements are only considered by a small fraction of software engineering professionals in practice. A recent survey was conducted with 374 software professionals [EYLL11]. The survey considers if eliciting, analysing and documenting of security requirements occurs in real-world practice. The survey stated that around 59% of software engineers consider security requirements just implicitly. Only 9% consider security requirements explicitly and 31% did not consider them at all. These results further show that knowledge about security requirements engineering is sparse in industry and that guidelines and methods are required that help incorporate the available security knowledge into security requirements engineering in practice.

The need for easy access to knowledge about security requirements is recently addressed by different ontologies [SSCW12]. In addition, Fabian et al. [FGH+10] present a conceptual framework and terminology for security requirements engineering approaches. A study also shows how existing ontologies cover aspects of security requirements definition. It reveals that a large easy access common body of security knowledge is still not present. Hence, today software engineers have to extract pieces of knowledge from different sources.

A study on research in security requirements engineering for evolving software systems [NNY10] revealed challenges for security requirements engineering research. The study revealed that software evolution studies focus on the system-level and ignore the organisational level. The visions and goals of organisations are often the driving factor for software evolution. A deeper understanding of the development of such goals over time could reveal important knowledge. This knowledge can drive software lifecycles.

In addition, software systems often break, because of the changes caused by evolution. We need requirements engineering approaches that withstand these changes. Hence, requirements engineering methods should support the development of systems to make this possible.

Moreover, systems have to fulfil their security requirements even if their operating conditions change. Requirements engineering approaches are needed that consider the environment a system is in, and adapts its security requirements and solutions accordingly. Especially, considering FI applications that provide this elasticity becomes an increasingly important challenge.

Another challenging aspect in the security requirements engineering realm is related to how to evaluate the effectiveness of these methods. In fact, the effectiveness of security requirements methods is uncharted territory. We do not know to what degree the methods yield to the identification of security requirements. A significant number of methods have been proposed to elicit and analyse security requirements, but there are few empirical comparative evaluations to select a method over another. With the notable exception of [OS09, MP12] most
works only report evaluations where the method’s effectiveness is assessed by the methods’ own inventors. It is thus really important to understand if these methods are effective and why they are or are not. The challenging question is not only which security requirements methods work, but also what makes them work. It is necessary create an empirical ground for comparing security requirements methods and help researchers to improve their methods to shorten the path for the adoption of these methods in real practice.

In light of the challenges and principles highlighted above the research objectives we proposed here are based on the evolution and the trends in the security requirements engineering area. They are detailed below:

- Definition of techniques for the identification of all stakeholders (including attackers), the elicitation of high-level security goals for all stakeholders, and the identification and resolution of conflicts among different stakeholder security goals.
- Refinement of security goals into more detailed security requirements for specific services and devices.
- Identification and resolution of conflicts between security requirements and other requirements (functional and other quality requirements).
- Transformation of a consolidated set of security requirements into security specifications.
- Provision of easy access to security requirements engineering knowledge for practitioners.
- Creation of an empirical ground to evaluate the effectiveness of security requirements methods.
- Creation of security requirements engineering approach for evolving and context aware systems.

The objectives listed above obviously remain generic by nature, one should bear in mind though that the forthcoming techniques and results will be applied to a versatile set of services, devices and stakeholder concerns.

5.4.1.1 Legal Compliance

Identifying relevant compliance regulations for a software system and aligning it to be compliant is a challenging task. The construction of software systems that meet compliance regulations, such as laws, is considered to be difficult, because it is a cross-disciplinary task in law and software and systems engineering [BMT87]. Otto et al. [OA07] conclude in their survey about research on laws in requirements engineering that there is a need for techniques to identify and analyse laws, and to derive requirements from laws. Massey et al. [MOH+10] conducted a case study that illustrated the challenges of interpreting legal texts and integrating these into security and privacy requirements for software systems. The authors concluded that software engineers lack the necessary training to interpret legal texts.

Pattern-based approaches capture the knowledge of domain experts for re-use. Beckers et al. [BFK+12] proposed a pattern-based approach for identifying and analysing laws. However, the identification and analysis of a relevant law alone is not sufficient for software engineers. They require a structured method that uses this approach to derive software requirements and further implementable software specifications. Different approaches exist that
analyse the structure of laws and find different ways to integrate these into a given software engineering process. Breaux et al. [BA08] present a framework that covers analysing the structure of laws using a natural language pattern. This pattern helps to translate laws into a more structured representation. Siena et al. [SPS08] describe the differences between legal concepts and requirements. Álvarez et al. [AOP02] describe reusable legal requirements in natural language.

The following research objectives are the focus of compliance research:

- Identifying relevant laws for a given software engineering project, based upon the functional as well as quality requirements (e.g. security and privacy) of the system.
- Developing computer-aided or even automated approaches to identify relevant laws.
- Supporting the interpretation of legal texts and aligning these with the requirements of a software system.
- The mapping of legal texts to requirements is a challenge, because the legal domain and the software engineering domain use different terminologies.
- The increasing scale of software systems requires that laws of different countries are considered in software projects. For example, cloud-computing systems often store their data distributed in different countries.
- Providing training measures to teach software engineers how to evaluate whether their software system is compliant and how to interpret legal texts.

5.4.1.2 Privacy Requirements Engineering

Privacy concerns have increased recently, due to an increase in large-scale information systems that process or store personal information in FI applications. A number of guidelines for privacy are available. The Fair Information Practice Principles (or short FIPs) [OECD80] are widely accepted, which state that a person’s informed consent is required for the data that is collected. Collection should be limited for the task it is required for and data should be erased as soon as this is not the case anymore. The collector of the data shall keep the data secure and shall be held accountable for any violation of these principles. In the European Union, the EU Data Protection Directive, Directive 95/46/EC does not permit processing personal data at all, except when a specific legal basis explicitly allows it or when the individuals concerned consented prior to the data processing [EU95]. The U.S. have no central data protection law, but separate privacy laws, e.g., the Gramm-Leach-Bliley Act for financial information, the Health Insurance Portability and Accountability Act for medical information, and the Children’s Online Privacy Protection Act for data related to children [HSA08]. These legal guidelines must be implemented by any given software system for which the guidelines apply. However, in order to comply with these guidelines, the privacy requirements for a given software system have to be elicited. In addition, the privacy requirements of the users of a system might extend beyond the legal demands. These should also be considered, to make it acceptable to its users. For example, an internet-based distributed medical database will not be accepted by users if the privacy interests of the patients are not considered.

The need for privacy in the Future Internet demands a set of novel approaches to guarantee privacy protection for all stakeholders involved. The privacy requirements of these
stakeholders have to elicited and ensured. This problem is difficult to address in Future Internet applications like clouds, because of their complexity caused by the numerous stakeholders and technical systems involved. Hence, privacy requirements engineering approaches have to be able to take this complexity into account. For example, the PriS method [KKG08] elicits privacy requirements in the software design phase and models privacy requirements as abstract organizational goals. Deng et al. [DWS+11] generate a threat tree for privacy based upon the threat categories e.g. linkability. Spiekermann and Cranor [SC09] develop a framework for considering privacy in software systems. The authors execute a privacy requirements analysis via stating important stakeholder expectations. Their method also requires an analysis that checks if the system processes personal information and if this is necessary for a system. If not, these shall not be acquired by the system. The authors state that software engineers lack awareness for these issues.

Selecting appropriate controls to ensure privacy is difficult. Privacy controls can be chosen as mechanisms that are introduced into the software. For example, the method from Deng et al. maps privacy threats to parts of a system. The method supports the selection of privacy controls appropriate for that particular part of the system. Another approach is to change the system in order to preserve privacy. For example, the PriS method focuses on processes in software. Privacy solutions result in changes of these processes. Hence, depending upon the preferred kind of solution, software engineers have to choose a fitting method.

The selection of privacy controls requires also knowledge about existing privacy controls. Danzies and Gürses investigated current privacy related technologies in order to classify their origin into a larger context of privacy [DG10]. The authors classified privacy enhancing technologies (PETs), e.g., anonymizers, and derived three areas of privacy research: privacy as confidentiality, privacy as control, and privacy as practice. Privacy as confidentiality considers privacy within an autonomous digital sphere. In this sphere data about persons is protected from unauthorized access. Privacy as control is about concealing personal information, but at the same time control what happens to it. Privacy as practice concerns the transparency of data flow. The focus is on the way personal data is collected, aggregated, analyzed and used. The transparency of these actions shall help people to make informed decisions about their personal data. Researchers have to develop engineering methods that support software engineers in choosing the right privacy control for a given problem.

Regarding the research approaches and challenges described above, we propose the following research objectives for the evolution of the privacy requirements engineering area:

- Identify a common abstraction level for discussing about privacy for requirements engineers, lawyers, cryptographers, etc.
- Develop computer-aided support for identifying privacy threats based upon requirements or architectures.
- Provide reasoning methods for choosing the right privacy enhancing technologies for a privacy requirement.
- Integrate privacy requirements engineering into existing software engineering processes to raise the awareness of software engineers for these issues.
- Support the different views of privacy in different legislations around the world.
5.4.1.3 Threats

There are several threats in the case the previous research strand is not properly addressed. In particular, business risks are increasingly related to operational risk and eventually to IT security risks. The lack of the capability to properly embed specific FI security requirements in the SDLC and the lack of analysis capability when considering conflicting multi-stakeholder interests will dramatically limit the effectiveness and impact of new FI services.

5.4.2 Secure Service Architecture and Design

By 2020 the Future Internet (FI) will be both laid out as public infrastructures and dynamically created by the objects connecting to one another [HNP09]. Consequently, FI services and applications will run open and dynamically in heterogeneous environments. In this section, we explore the challenges and opportunities triggered by these characteristics for model-driven techniques.

The design phase of FI applications is a timely moment to enforce and reason about these security mechanisms, since by that phase one must have already grasped a thorough understanding of the application domain and of the requirements to be fulfilled. Meanwhile, the dynamic, open and heterogeneous nature of FI prevents from completely grasping all constraints and expectations about the application. The fundamental challenge is thus to leverage model-driven techniques to (i) reason about trade-offs between security and other concerns, at design time and at runtime, and (ii) to explore and capitalize diverse strategies to face unexpected situations.

5.4.2.1 Reasoning about Security in Multi-concern Design Models

Separation of concerns is an essential principle of software design that aims at managing the growing complexity of software intensive systems [GEL08, PAR72]. Since the early 2000’s this software engineering principle has been integrated in model-driven engineering, through a large research and tooling effort to support aspect-oriented modeling (AOM) [RGF06, WJE09]. The main motivation of AOM is to allow modeling different viewpoints separately (e.g., functionality and access control), analyze them separately and then compose them in a global system design that can be refined towards implementation. In this perspective model composition tools [FFR07] are particularly important for model-driven security design.

The principle of separation of concerns for model-driven security is currently developed in two major frameworks that were acknowledged to be influential papers, 10 years after, at the MODELS’12 conference: UMLsec [JUR02] and SecureUML [LBD02]. Both approaches extend UML to integrate access control and privacy modeling, for the design of secure web applications. With the emergence of the FI these approaches to separation of concerns need to be extended. Indeed, FI applications will be much more integrated with heterogeneous execution environments than current web applications. This means that, in addition to security and functionality, designers of FI applications will have to consider energetic concerns (since data acquisition or monitoring services will run on resource-constrained execution nodes) or
volatility concerns. Designers will also have to reason at early stages about conflicting concerns such as CIA vs. usability [CRG05] or privacy vs. personalization [AGK11, GEL08].

The emergence of novel concerns for the design of FI applications thus requires (i) formalisms to model these concerns; (ii) model composition mechanisms that integrate security with these concerns; and (iii) automated reasoning techniques that allow exploring trade-offs between concerns, e.g. using meta heuristic search algorithms. Novel approaches in NESSoS contribute to the state of the art on transformation verification to support the sound integration of security concerns [BEC12].

5.4.2.2 From Design Diversity to Model-driven Diversity Synthesis

Previous works have shown that the low level of diversity in software systems is a major risk for resilience and security [STA04, FSA97]. This relies on the observation that a vast majority of applications, even sensitive ones, run on a small number of operating systems, communication protocols or hardware infrastructures. Consequently, if attackers find a way to exploit a breach on one system, this knowledge can serve to attack a very large number of systems or to disseminate the attack through the network. In the face of this threat, the systems, security and distributed systems communities have investigated multiple strategies to introduce diversity in software systems, to improve security. These solutions are inspired by the long tradition of design diversity for reliability [ALR04], and range from artificial immune systems [HOF00] to distributed algorithms that optimize diversity [ODS04, CKS08].

All existing techniques for introducing software diversity are essential for security. However, current approaches hardly consider the extremely dynamic and open nature of FI applications. Indeed, they all consider either a centralized architecture or a stable set of functionalities, which allow designing the diversification mechanisms before deployment. However, FI applications will be decentralized and constantly evolving, calling for novel mechanisms to handle dynamic software diversity. Here, model-driven engineering transformation and generative technologies, in combination with testing techniques, should be considered as the foundations for innovative adaptive design principles that explore and increase the global diversity in FI applications. The major challenge here lies in the production of meaningful diversity, at runtime, through automatic exploration techniques.

The shift from design diversity to model-driven runtime diversity synthesis for increased security in FI applications requires: (i) model-driven generative techniques to inject diversity in software modules; (ii) model-based reasoning mechanisms to select and propagate useful diversity; (iii) adaptive runtime mechanisms to establish diversity in a decentralized fashion. The DIVERSIFY FET project will start investigating these issues in 2013, in direct collaboration with ecologists who will provide expertise in biodiversity dynamics¹.

5.4.2.3 Support for Model-driven Security Dynamic Adaptation

The open and dynamic nature of FI applications and their environment prevents system architects and designers to foresee all situations an application will have to face. This leads to

¹ www.diversify-project.eu
the emergence of innovative techniques to evolve the architecture and design models while the system is running, fading the boundary between design time and runtime [GHE11].

The support for runtime security policies will require adapting policy enforcement architectures to new architecture models that emerge for the Future Internet. As an example, the common architecture for access control enforcement, based on a PEP, PDP and PIP usually deployed on client-server architectures, hardly fits pervasive architectures that are highly distributed, decentralized and heterogeneous, and that include computation nodes that do not have enough resources to run a PEP, PDP and PIP. Consequently, it will be necessary to leverage the massively distributed monitoring capacities of pervasive architectures to devise novel security enforcement mechanisms. In certain cases these mechanisms should adopt an optimistic approach to security enforcement [POV99], relying on opportunistic audits rather than on systematic preventive checks.

These novel developments for secure design modeling, should leverage the recent advances in the ‘models@runtime’ paradigm, which consists in keeping an abstract representation of a running system in order to reason about changes and drive dynamic reconfiguration [MBJ09].

5.4.2.4 Integrate Security Modeling in Domain-specific Modeling Languages

The increasing number of concerns integrated in FI applications leads to the emergence of multiple domain-specific languages. These languages allow stakeholders with heterogeneous backgrounds to model their concerns in the early development phases. This reduces the cognitive distance between the abstract formal concepts and domain experts’ knowledge, reduces the risk of errors in requirements elicitation and can drastically improve the quality of the final application. However, by opposition to UML, these new languages do not have a native support to express access control or privacy policies.

In order to face this novel situation, model-driven secure design needs novel abstractions to devise generic formalisms for the definition of security policies. The syntax of these formalisms should be adaptable to the domain-specific language, and the generic formalisms should offer ‘hooks’ which domain-specific actions can be integrated in the analysis of policies. As an example, recent work integrated security concerns in a business modeling language to let project managers and company executives reason on security issues on models expressed in concepts they can apprehend [GOF12].

Other works include access control policy enforcement mechanisms generated automatically from high-level, requirements models. The policies need to be submitted to checks in order to ensure security aspects being modeled are preserved in the code [BKM12]. This work is developed within the ASCENS EU project².

5.4.2.5 Reusable Architectural Know-how

Another research focus is on design patterns and on reusable architectural know-how. A design pattern is a general repeatable solution to a commonly occurring problem in software design. Design patterns, once identified, allow reuse of design solutions that have proved to be

² www.ascens-ist.eu
effective in the past, reducing costs and risks usually arising by uncertainty, leveraging a risk and cost-aware. There are large catalogues and surveys on security patterns, however the FI applications yet to come and the new scenarios enabled by FI need to extend and tailor these catalogues. In this context, the first step is studying the patterns currently available and, what is more important, to analyze the relationships amongst them, identifying those which may be useful for FI scenarios.

5.4.2.6 Threats

We distinguish two critical areas for the design and architecture of secure services:

- Concern interaction analysis. If we do not use effective methods and tools to deal with security concerns in design models the major threat we will face will be the increasing cost to deploy, fix and maintain security mechanisms. Indeed, security concerns are tightly related to other concerns such as functionality or human interfaces. If we can design abstract models for these concerns, then, the cost to analyze interactions and fix the models until reaching a satisfactory trade-off between the concerns, can be kept reasonable. On the other hand, if these analysis cannot be performed on abstract models, they are much more difficult to understand at the code level, and even more difficult to fix and maintain, because of all the technical details that must be introduced in the implementation.

- Model-driven adaptation. Because of the highly dynamic nature of FI applications, reconfiguration and adaptation are essential mechanisms for the success of FI. Thus, we need rigorous and systematic techniques for composing models to analyze interactions before reconfiguration. The major threat if we cannot achieve safe and effective model composition will be limited abilities for adaptation and thus increased risks of failures in front of major changes in the environment.

5.4.3 Security Support in Programming Environments

Security Support in Programming Environments is not new; still it remains a grand challenge, especially in the context of FI services. Securing FI services is inherently a matter of secure software and systems. The context of FI services sets the scene in the sense that (1) specific service architectures will be used, that (2) new types of environments will be exploited, ranging from small embedded devices (‘things’) to service infrastructures and platform in the cloud, and (3) a broad range of programming technologies will be used to develop the actual software and systems.

The search for security support in programming environments has to take this context into account. The requirements and architectural blueprints that will be produced in earlier stages of the software engineering process cannot deliver the expected security value unless the programs (code) respect these security artefacts that have been produced in the preceding stages. This sets the stage for model driven security in which transformation of architecture and design artefacts is essential, as well as the verification of code compliance with various
properties [BCE11]. Some of these properties have been embedded in the security specific elements of the software design; others may simply be high priority security requirements that have to be articulated, such as the appropriate treatment of concurrency control and the avoidance of race conditions in the code, as a typical FI service in the cloud may be deployed with extreme concurrency in mind.

Supporting security requirements at the programming code level requires a comprehensive approach. At least two essential facets must be covered:

- **The service creation** means must be improved and extended to deal with security needs. Service creation means aggregating as well as *composing* services from pre-existing building blocks (services and more traditional components), as well as *programming* new services from scratch using a state-of-the-art programming language. The service creation context will typically aim for techniques and technologies that support compile and build-time feedback. One could argue that security support for service creation must focus on and enable better static verification.

- **The service execution** support must be enhanced to deal with hooks and building blocks that facilitate effective security enforcement at run-time. Dependent on the needs and the state-of-the-art this may lead to interception and enforcement techniques that “simply” ensure that the application logic consistently interacts with underpinning security mechanisms such as authentication or audit services. Otherwise, the provisioning of the underpinning security mechanisms and services (e.g. supporting mutual non repudiation, attribute based authorization in a cloud platform etc.) will be required as well for many of the typical FI service environments.

It is crucial to improve upon these two facets in order to lift the current state of practice to a higher degree of quality. Having the right compilation tools will not only reduce the number of bugs and help find them quicker, but it will cut down on the attack surface of an application by avoiding common programming vulnerabilities. Additionally, if an attacker succeeds in exploiting a service, the monitoring tools and policies will be able to mitigate the attack by constraining the access of the attacker to the system.

In the remainder of this section, we further elaborate on the needs and the objectives of community wide research activities, in order to deal effectively with the grand challenge sketched above.

5.4.3.1 Middleware Aspects

The research community should re-investigate service-oriented middleware for the Future Internet, with a special emphasis on enabling deployment, access, discovery and composition of pervasive services offered by resource-constrained nodes. The most relevant ones are Quality-of-Service aware dynamic service discovery and composition, in particular accounting for properties related to security, privacy and trust. In order to ensure that published security properties of FI services are correct, monitoring business compositions must be done and analysed. Monitoring infrastructures for several platforms including Java and BPEL must be developed. Another important facet in this respect is information flow analysis for business process languages. The increasing usage of IT systems in practical business logic execution
entails the need for high quality and reliability. Business workflows frequently act on behalf of multiple parties having potentially differing interests, thus malfunction can lead to the compromise of sensitive business data. Therefore, the analysis whether the business process conforms to corporate information security policies is of high priority. Note that contemporary languages and technologies lack this capability.

Regarding this, it may be worthwhile to explore up to which extent model-driven security engineering techniques and methodologies can be used in the context of secure business processes, where separation and binding of duties policies as well as access control policies constraint the execution of tasks by specific parties [VAL12].

5.4.3.2 Secure Service Programming

Many security vulnerabilities arise from programming errors that allow an exploit. Future Internet will further reinforce the prominence of highly distributed and concurrent applications, making it important to develop methodologies that ensure that no security hole arises from implementations that exploit the computational infrastructure allowed by Future Internet. The research community must further investigate advances over the state-of-the-art in fine-grained concurrency to enable highly concurrent services of the Future Internet, and will improve analysis and verification techniques to verify, among others, adherence to programming principles and best practices.

5.4.3.2.1 Verifiable Concurrency

Lock-free wait-free algorithms for common software abstractions (queues, bags, etc.) are one of the most effective approaches to exploit multi-core parallelism. These algorithms are hard to design and prove correct, error-prone to program, and challenging to debug. Their correctness is crucial to the correct behaviour of client programs. Research should now focus on building independently checkable proofs of the absence of common errors, including deadlock, race conditions, and non-serialize ability [JPS+08].

5.4.3.2.2 Adherence to Programming Principles and Best Practices

Programming support must include methods to ensure the adherence of a particular program to well-known programming principles or best practices in secure software development. Emphasis will be put on language extensions that guarantee adherence to best practices, and verified design patterns that can be used during development. Also, it is necessary to consider that new features in programming languages may result in new features in modelling languages. Moreover, new programming constructs will arise to deal with several security properties and include disciplined programming techniques.

The research community might investigate and re-visit methods from language-based security, in particular type systems, to enforce best-practises currently used in order to prevent cross-site scripting attacks and similar vulnerabilities associated with web-based distributed applications. Obviously, the logical rationales underlying such best practises must be articulated, enabling he development of type systems enforcing these practises directly – thus allowing users to deviate from rigid best practices while still maintaining security.
5.4.3.3 Platform Support for Security Enforcement

Future Internet applications span multiple trust domains, and the hybrid aggregation of content and functionality from different trust domains requires complex cross-domain security policies to be enforced, such as end-to-end information flow, cross-domain interactions and usage control. In effect, the security enforcement techniques that are triggered by built-in security services and by realistic in the FI setting, must address the challenge of complex interactions and of finely grained control [HMS06]. Research should therefore focus on enforcing cross-domain barriers in the interaction among different cross-domains, and on the enforcement of fine-grained security policies via execution monitoring.

Secure Cross-Domain Interactions
Web technology inherently embeds the concept of cross-domain references, and applications are isolated via the Same-Origin-Policy (SOP) in the browser. From a functional perspective, the SOP poses limitations on composability and cooperation of different applications, and from a security perspective, the SOP is not strong enough to achieve the appropriate application isolation.

Finely grained execution monitoring
Trustworthy applications need run-time execution monitors that can provably enforce advanced security policies [GBJ06][BLW05] including fined-grained access control policies, usage control policies and information flow policies [SM03]. (These topics are clearly related also to the area of run time verification and enforcement.)

Supporting Security Assurance for FI Services
Assurance will play a central role in the development of software-based services to provide confidence about the desired security level. Assurance must be treated in a holistic manner as an integral constituent of the development process, seamlessly informing and giving feedback at each stage of the software life cycle by checking that the related models and artefacts satisfy their functional and security requirements and constraints. Obviously the security support in programming environments that must be delivered will be essential to incept a transverse methodology that enables to manage assurance throughout the software and service development life cycle (SDLC). The assurance aspects are a key part of this roadmap (see Section 5.3.1).

5.4.3.4 Threats
The OWASP, project (www.owasp.org), top ten list for web application security, clearly shows how coding issues as injection, cross scripting and generally speaking wrong programming practices are the major issues to be tackled. Indeed, reliable programming environments and proper coding techniques are crucial to minimize the presence of exploitable vulnerabilities in software-based services. Lack of specific research activities in the previous topics risks to contribute to have errors in those programming environments that will be also propagated to the final programmer code. Similarly, failing to recognise that new high level
service execution languages introduce new potential threats (in addition to the level of system programs) as well as the need of middleware for run-time monitoring risks to contribute to expand the possibility of attacks on web services.

5.4.4 Secure Service Composition and Adaptation

Future Internet services and applications will be composed of several services (created and hosted by various organizations and providers), each with its own security characteristics. The business compositions are very dynamic in nature, and span multiple trust domains, resulting in a fragmentation of ownership of both services and content, and a complexity of implicit and explicit relations among the participants. Service composition support is required, in terms of the composition languages such as BPEL, as well is in terms of the underpinning in middleware platforms.

One of the challenges for the secure service composition is the need for new formalisms to specify service requests (properties of service compositions) and service capabilities, including their security policies, and tools to generate code for service compositions that are able to fulfill these requirements based on the available services. In addition to complying with the requested functional and quality-of-service-related characteristics, composition languages must support means to preserve at least the security policies of those services being composed.

As a matter of fact, dynamic adaptation will play a major role in FI applications to ease service composition, paying special attention to the semantic level adaptation, which is left aside in most of the nowadays proposals. Security contracts should be used during the whole life of software and will be exposed in the composition of services, not only in single services, and their dynamic evolution should be managed. Furthermore, the existence of an open market for composable services with well-defined security properties is required, and service customization should not come at the cost of security. As a consequence of the reasons mentioned above, service composition should be an easy, secure, and commonly performed task.

Given that the outcome of the composition of two secure services might not be a secure bigger service, it is required to assess the risk of a service composition. Also, it would be very interesting to have a test-bed for comparing Service Adaptation by Contract approaches. Other topics to address include quantifying and control information sharing in service composition, and developing automatic risk reduction capabilities when recruiting services for compositions. Unifying the different Aspect-Oriented Modelling (AOM) techniques for model composition poses a gap. Also, the research community needs to consider the cases where only partial or inadequate information on the services is available, in such a way that the composition will have to find compliant candidates or uncover the underspecified functionality.

In order to achieve the integration and interoperability of services, some ongoing solutions are based on semantic annotations and secure adaptation contracts, as well as on decentralized secure composition and on distributed component models. However, further solutions are required. First, services and components need to be more open, with clearer open interfaces and need to be easily accessible from known repositories. Moreover, it is required to research on how to efficiently compose security measures.
5.4.4.1 Threats

Service composition is one of the main distinguishing features of the Future Internet service paradigm. The capability to achieve trustworthy secure composition is thus paramount. Failing in constructing such a framework would harm the whole concept. Building secure services, that cannot be further composed is an inherent obstacle that need to be removed and would make fragile the whole architecture.

5.4.5 Run time verification and enforcement

Run-time verification complements programming-level verification and testing in order to provide the assurance that the latter cannot always deliver, be it for scientific and technological reasons, be it for reasons of organizational complexity. The latter may frequently occur in a multi-organisational context, typical for service compositions in Future Internet. We need to research on approaches for run-time monitoring of data flow, as well as technologies for privacy-preserving usage control.

- **Run-time monitoring of data flow.** Electronically and autonomously executed business logic plays a crucial role in today’s practice. Since these systems may possibly have access to sensitive data of different parties with potentially contradicting interests, information flow policies may need to be enforced. Lately, it has been shown that information flow controlling run-time monitors can assure the same level of termination insensitive non-interference as the original Denning-style static checking procedure, while providing the advantage of being able to be more permissive. We need to develop the theoretical foundations of a run-time monitor, which is suited for the enforcement of information flow policies in an environment, where complex hierarchic data is manipulated (such as for instance in BPEL).

- **Monitoring Usage Control Properties.** Usage control (e.g. see [LMM10]) extends traditional access control with policies and mechanisms to control the usage of data after it has been accessed. Therefore, usage control addresses central privacy-related security issues, which are raised by Future Internet applications and for which only partial solutions exist nowadays. Advances on the state of the art should be made in observing and controlling the usage of sensitive data in Future Internet applications. We need to develop methods that monitor the use of data and ensure that usage conforms to the intended purposes for which the data was collected. Based on previous work on usage control and monitoring of security policies, we need to adapt and extend run-time verification techniques for checking the adherence of data consumers to usage control policies. Furthermore, we need to study the integration of these monitors into Future Internet applications that report on or, where possible, prevent the misuse of sensitive data. Even tough, there has been already substantial progress in these directions [BHFZ11a, BHFZ11b, BJKZ12] research should be conducted towards them.

A current limitation in monitoring security policies is the amount of data that can be efficiently processed with the existing monitoring techniques. We need to consider specific
techniques such as parallel processing to address this issue. Another limitation concerns the handling of incomplete or inconsistent input data. Moreover, security policies are typically formulated at high levels of abstraction whereas the monitors observe low-level system events that are scattered to different network nodes or to different layers of the system stack. The management of distributed enforcing mechanisms also deserves further study.

5.4.5.1 Threats

Runtime verification and enforcement offer the possibility to overcome some limitations of other security techniques such as static analysis and permits continuous and fine-grain enforcement of policies. Lack of these technologies will limit the control capabilities that user may exercise on systems/services/data, as well as harm the possibility to enable compliance techniques with legislations, organizational policies, and business rules.

5.4.6 Users Security Awareness

The growth of the FI is making users become more situational-security aware, that is, users are increasing the knowledge on the threats and risks they are exposed. However, security is a moving target and security requirements are possibly the most dynamic type of requirements. Vulnerabilities and threats are published on a daily basis and it is difficult to keep the pace even for the experts in dedicated ICT companies. This dynamicity poses several issues such as for example how to present clear information to the user about changes in security concerns. Usability, privacy controls and security configuration for end-users should be context-aware.

In the last year, there was a lot of discussion on issues such as how to present clear information to the user about changes in security concerns. While already in 2010 Gartner announced [GAR10] that the future of security is in context-awareness and adaptation, in 2012 we saw also some real contributions to this vision.

The use of contextual information for secure autonomous self-configuration and self-management has already been treated in network security while in secure software engineering there was not much research. This has changed and there are projects and papers dealing with the issue of taking the burden of security responsibility a step away from the user [FIA].

Regarding privacy, similar to other “high-level” declarative requirements that link natural language to operational level events, a key research direction is the link between machine-readable and composable declarative policies that make easier policy monitoring or enforcement and natural language policies that facilitate understanding by end-users and compliance with regulations. In this area, semantic technologies should be adopted by a wide range of security mechanisms, policies and solutions, in addition to a visual representation of security state for awareness and analysis.

On the user awareness side, the main event is the European Security Month. The first pilot of this event has taken place in October 2012, promoting cyber security to citizens. To date, six European countries – Luxemburg, Portugal, Spain, UK (Get Safe Online), Slovenia and Norway – have confirmed their participation [ENIS]. Proposal on a European Strategy for Internet Security that was announced by Neelie Kroes at High Level Public-Private Security
NESSoS - 256980

Roundtable Brussels, 21st March 2012 also mentions “raising consumers' awareness by promoting appropriate mechanisms to engage intermediaries in providing tailored programs and messages on risks, security and safe online behaviour” [KRO12].

There are also notable efforts related to RBAC (role-based access control) and enforcing rules that are dependent on runtime parameters. Location-aware RBAC can for example be used to implement location dependent access control and also other security enhancing solutions on future internet devices. Purpose based access control allows users using some data for a certain purpose with conditions.

There are also advances in expressing highly complex requirements and policies, such as privacy, which will enable user-friendly context-aware mechanism for future internet security management. The Posecco project [POS] lists a number of publications relevant for security policy configuration or automated conflict resolution.

5.4.6.1 Threats

If we lose the opportunity to perform research in this direction, users would consider security as a “show stopper” and this would allow the spread either of services with limited security mechanisms, thus attack-prone, or disincentive user from using those services.

5.4.7 Security management

The horizontal activities in the area of full life cycle support for secure services are predominantly addressing the construction, and to a lesser extent the potential evolution and adaptation of secure services for the FI. It is clear that such secure services –especially the security features and related subsystems- should be supported with appropriate monitoring and management support in order to observe the “quality of protection” in production systems at run time, and in order to implement the necessary measures for dealing with new threats and attacks, and possibly also with security incidents that require modification of the service implementation and/or its deployment environment. This type of activity (security monitoring and management) is not new in the domain of monitoring security infrastructures and secure systems, yet it is still limited in the space of service provisioning and deployment.

It should be noticed that research on risk management and assurance, as sketched in earlier sections, would be instrumental to this additional challenge. Security monitoring and management for new services will be essential to limit and control the total cost of ownership in the corresponding services business. This topic should also be considered in light of the “autonomic security” challenge, which may offer additional advantages that contribute to the business case of securing FI services.

5.4.7.1 Threats

Security management is always a main concern. The new FI services demand for new management techniques to ease system and services administrator tasks, in particular during security incidents, allowing them to manage and maintain secure systems.
5.4.8 Autonomic Security

In the future, due to a high number of events, devices, users, services etc., automated customization at run-time of specific security mechanisms will be of paramount importance, although it could lead to new potential attacks in which the attacker tries to put down this automated reconfiguration mechanism. New techniques and methods for automation of secure service engineering would be desirable that allow for a risk reduction in the engineering process as well as a cost saving for companies when adopting them.

Autonomic security assumes security decisions as autonomous and spontaneous acts of the system, considering the possibility to take appropriate actions, based on self-capabilities, as self-monitoring and self-protection. These properties can benefit from the entrance of such big data explosion into the IT mainstream. Every FI component is able to generate a stream of information that is both valuable and ever changing. It is becoming insufficient to simply store the data for later analysis and modelling. Large data stream processing is becoming a commodity. Further research is however needed to see how this can be used in the area of autonomic security.

Another area where interesting research is being developed is trustworthiness of data used for decision making in autonomic security.

In this ambit, predictive analysis of security problems that can be used in order to anticipate and rely on a good decision support is challenging. The key issues for this are twofold, creating a smart reasoner that makes rapid and relevant reconfiguration decisions, and deciding which data is really valuable for feeding the reasoner.

Secure dynamic adaptive architectures is another challenging field, more specifically how to integrate security concerns in these adaptive architectures, and how to consider specific features of FI (e.g., monitoring geo-localization to adapt security according to the location of a mobile device). Understanding the effect of architecture reconfiguration on the application is a gap to be filled, being required verification based on concern interaction analysis.

Solutions should focus on new suitable monitoring mechanisms to feed the reasoners. In order to tackle evolution of FI environments, adaptive configuration of policies and countermeasures, as well as dynamicity of mechanisms to respond to vulnerabilities, are required. Enforcement gateways with reacting components could take a more relevant role as well. Establishment of security contexts under which a service executes are also relevant, since reconfiguration decisions will be based on these contexts. The research directions in this area are twofold: development of contextual frameworks for security, and verified reusable components for certain contexts.

5.4.8.1 Threats

The main risk of not having autonomic security is to fall again in the well-known problem of having security detached from system development. In that case, security is just considered as an afterthought, with all the costs deriving from system re-design/development and deployment. As a matter of fact, considering autonomic security helps to consider security as built-in aspects of any ICT product.
5.4.9 Quantitative Aspects of Security

Quantitative security entails that the claims about the security of a software artefact (and the quality of the software methods used to produce it) can be backed up by objective, numerical evidence.

The quantitative aspects of security provide support for the properties mentioned in Section 5.2 and the topics discussed in Section 5.4. In particular, quantitative assessment of security becomes essential for assurance and risk and cost analysis and estimation. In this latter point, security economics play an important role as an emerging field of research [AND01]. However, there are other topics that, even though at first sight could seem unrelated to this issue, could greatly benefit from this area of research. We are referring to usability and user security awareness [ING10]. The former would benefit as quantitative assessment would support numerically studying the interaction of users with security and privacy policies, whereas the latter would assist users to become aware of, for instance, how much privacy is being leaked while using a certain application. This latter information could be gathered by applying formal quantification of security properties [BAC09].

Other areas that may use these quantitative aspects include security metrics, and concretely the prediction of software vulnerabilities [SMW11], and empirical methods [YSK12] where it would be possible, for example, to quantitatively analyse the interaction between developers and a secure programming standard.

Evidence-based research in secure software engineering is becoming of strategic importance for many funding agencies. For instance, the "Science of Security" initiative has emerged in the US, fostering empirical and formal methods in the field of security. In this context, the NSA has awarded three top US universities (CMU, NC State, Urbana-Champaign) with a large grant (http://www.iti.illinois.edu/research/projects/science-security-sos-lablet).

In Europe, the 7th Framework Programme was calling for projects on "metrics and tools for quantitative security assessment and predictive security" in its Trustworthy ICT Objective (ICT-2011.1.4).

Quantitative security is an inter-disciplinary research area that requires the pooling of expertise from security, software engineering, artificial intelligence, formal methods, social and cognitive sciences, as well as economics. This strategic research line need to be fostered in Europe in a more substantial and coordinated way.

5.4.9.1 Threats

Quantitative Security provides a more accurate way for users and developers to understand whether the applications they are using work in the expected way. Failing to research in this area will mean a more vague assessment on the use of software and applications.
6 Conclusion

This deliverable presents the NESSoS research roadmap on Secure Service Engineering. The roadmap has been set up in the specific context of the FI. As this paradigm is emerging new security needs for its services and applications will be needed. This will mean that new research topics will have to be addressed or some others should be emphasized.

The document contains a set of topics that the NESSoS consortium considers as important for research in the coming years. These topics have been supported by the NESSoS IAB and associate members.

In the future we plan to share the document with the whole research community hoping this will provide us with additional feedback, achieving thus the maximum consensus as possible on the elaboration of the research roadmap.
Contributors

Mohammed Achemlal
Benoit Baudry
Kristian Beckers
Marianne Busch
Manuel Clavel
Jorge Cuellar
Lieven Desmet
Marina Egea
Sandro Etalle
Carmen Fernandez
Maritta Heisel
Paola Inverardi
Erno Jeges
Wouter Joosen
Jan Jürjens
Sokratis Katsikas
Nora Koch
Yves Le Traon
Javier Lopez
Mass Lund
Fabio Martinelli
Fabio Massacci
Francisco Moyano
Bashar Nuseibeh
Federica Paci
Aljosa Pasic
Pieter Philippaerts
Alexander Pretschner
Peter Ryan
Riccardo Scandariato
Bjørnar Solhaug
Christoph Sprenger
References

[BAC09] M. Backes, B. Koepf, A. Rybalchenko, Automatic Discovery and Quantification of Information Leaks (Oakland '09), 2009.
[D4.1_II] Engineering Secure Future Internet Services: A Research Manifesto and Agenda from the NESSoS Community.
[D11.2] Selection and Documentation of the Two Major Application Case Studies.

